
CN5E Labs (1.0) © 2012 D. Wetherall 1

Lab Exercise – TCP

Objective
To see the details of TCP (Transmission Control Protocol). TCP is the main transport layer protocol used
in the Internet. It is covered in §6.5 of your text. Review that section before doing this lab.

Requirements
Wireshark: This lab uses Wireshark to capture or examine a packet trace. A packet trace is a record of
traffic at some location on the network, as if a snapshot was taken of all the bits that passed across a
particular wire. The packet trace records a timestamp for each packet, along with the bits that make up
the packet, from the low-layer headers to the higher-layer contents. Wireshark runs on most operating
systems, including Windows, Mac and Linux. It provides a graphical UI that shows the sequence of pack-
ets and the meaning of the bits when interpreted as protocol headers and data. The packets are color-
coded to convey their meaning, and Wireshark includes various ways to filter and analyze them to let
you investigate different aspects of behavior. It is widely used to troubleshoot networks. You can down-
load Wireshark from www.wireshark.org if it is not already installed on your computer. We highly rec-
ommend that you watch the short, 5 minute video “Introduction to Wireshark” that is on the site.

wget / curl: This lab uses wget (Linux and Windows) and curl (Mac) to fetch web resources. wget
and curl are command-line programs that let you fetch a URL. Unlike a web browser, which fetches
and executes entire pages, wget and curl give you control over exactly which URLs you fetch and
when you fetch them. Under Linux, wget can be installed via your package manager. Under Windows,
wget is available as a binary; look for download information on http://www.gnu.org/software/wget/.
Under Mac, curl comes installed with the OS. Both have many options (try “wget --help” or
“curl --help” to see) but a URL can be fetched simply with “wget URL” or “curl URL ”.

Browser: This lab uses a web browser to find or fetch pages as a workload. Any web browser will do.

Step 1: Capture a Trace
Proceed as follows to capture a trace of a single TCP connection that sends a moderate amount of data;
alternatively, you may use a supplied trace. Many applications use TCP as a transport, including web
browsers. So we will simply perform a web download to exercise a TCP connection. However, note that
TCP is able to transfer data in both directions at the same time, but with a download content is only sent
from the remote server the local computer (after the initial request).

1. Find a URL of a single moderately-sized resource, and that you can download using HTTP (rather
than HTTPS). You may use your browser to search, perhaps looking for a picture (.jpg) or PDF
document (.pdf). You want to ensure that it is a single resource and not a web page (e.g., a
.html) with many inlined resources. As a suggestion, the SIGCOMM conference makes its tech-
nical papers available as PDF files. Find the URL of an interesting networking paper!

http://www.wireshark.org/�
http://www.gnu.org/software/wget/�

CN5E Labs (1.0) © 2012 D. Wetherall 2

2. Fetch the URL with wget or curl to check that you are able to retrieve at least 500 KB of con-
tent over at least several of network time seconds. For example, use the command “wget
http://sigcomm.org/paper.pdf” or “curl http://sigcomm.org/paper.pdf >
file”. If the fetch does not work then try a different URL; keep in mind that you may be refer-
ring to a URL by a shortcut for which browsers must do work to find the intended content, e.g.,
http://mit.edu/image.jpg may really be http://web.mit.edu/image.jpg. Successful examples of
fetching are shown in the figures below.

Figure 1: A successful fetch of a web resource with wget (Windows)

Figure 2: A successful fetch of a web resource with curl (Mac)

3. Launch Wireshark and start a capture with a filter of “tcp and host xx.xx.xx”, where
xx.xx.xx is the name of the remote server from which you will fetch content, e.g., “confer-
ences.sigcomm.org” in the figure showing our example below. The idea of the filter is to
only capture TCP traffic between your computer and the server. Your capture window should be
similar to the one pictured below, other than our highlighting. Select the interface from which to
capture as the main wired or wireless interface used by your computer to connect to the Inter-
net. If unsure, guess and revisit this step later if your capture is not successful. Uncheck “capture
packets in promiscuous mode”. This mode is useful to overhear packets sent to/from other
computers on broadcast networks. We only want to record packets sent to/from your comput-
er. Leave other options at their default values. The capture filter, if present, is used to prevent

http://sigcomm.org/paper.pdf�
http://sigcomm.org/paper.pdf�
http://mit.edu/image.jpg�
http://web.mit.edu/image.jpg�

CN5E Labs (1.0) © 2012 D. Wetherall 3

the capture of other traffic your computer may send or receive. On Wireshark 1.8, the capture
filter box is present directly on the options screen, but on Wireshark 1.9, you set a capture filter
by double-clicking on the interface.

Figure 3: Setting up the capture options

4. After the capture is started, repeat the wget/curl command above. This time, the packets will
also be recorded by Wireshark.

5. When the command is complete, return to Wireshark and use the menus or buttons to stop the
trace. You should now have a trace similar to that shown in the figure below. We have expand-
ed the detail of the TCP header in our view, since it is our focus for this lab.

CN5E Labs (1.0) © 2012 D. Wetherall 4

Figure 4: Trace of TCP traffic showing the details of the TCP header

Step 2: Inspect the Trace
Select a long packet anywhere in the middle of your trace whose protocol is listed as TCP. Expand the TCP
protocol section in the middle panel (by using the “+” expander or icon). All packets except the initial
HTTP GET and last packet of the HTTP response should be listed as TCP. Picking a long packet ensures
that we are looking at a download packet from the server to your computer. Looking at the protocol
layers, you should see an IP block before the TCP block. This is because the TCP segment is carried in an
IP. We have shown the TCP block expanded in our figure.

CN5E Labs (1.0) © 2012 D. Wetherall 5

You will see roughly the following fields:

• First comes the source port, then the destination port. This is the addressing that TCP adds be-
yond the IP address. The source port is likely to be 80 since the packet was sent by a web server
and the standard web server port is 80.

• Then there is the sequence number field. It gives the position in the bytestream of the first pay-
load byte.

• Next is the acknowledgement field. It tells the last received position in the reverse byte stream.
• The header length giving the length of the TCP header.
• The flags field has multiple flag bits to indicate the type of TCP segment. You can expand it and

look at the possible flags.
• Next is a checksum, to detect transmission errors.
• There may be an Options field with various options. You can expand this field and explore if you

would like, but we will look at the options in more detail later.
• Finally, there may be a TCP payload, carrying the bytes that are being transported.

As well as the above fields, there may be other informational lines that Wireshark provides to help you
interpret the packet. We have covered only the fields that are carried across the network.

Step 3: TCP Segment Structure
To show your understanding of TCP, sketch a figure of the TCP segment you studied. It should show the
position and size in bytes of the TCP header fields you can observe using Wireshark. Do not break down
the Flags field, or any Options field, and if you find that some TCP fields share a byte then group them. As
usual, your figure can simply show the frame as a long, thin rectangle. Try not to look at the figure of a
TCP segment in your text; check it afterwards to note and investigate any differences.

To work out sizes, observe that when you click on a protocol block in the middle panel (the block itself,
not the “+” expander) Wireshark will highlight the corresponding bytes in the packet in the lower panel,
and display the length at the bottom of the window. You may also use the overall packet size shown in
the Length column or Frame detail block. Note that this method will not tell you sub-byte positions.

Turn-in: Hand in your drawing of a TCP segment.

Step 4: TCP Connection Setup/Teardown

Three-Way Handshake
To see the “three way handshake” in action, look for a TCP segment with the SYN flag on, most likely at
the beginning of your trace, and the packets that follow it. The SYN flag is noted in the Info column. You
can also search for packets with the SYN flag on using the filter expression “tcp.flags.syn==1”. A
“SYN packet” is the start of the three-way handshake. In this case it will be sent from your computer to
the remote server. The remote server should reply with a TCP segment with the SYN and ACK flags set,
or a “SYN ACK packet”. On receiving this segment, your computer will ACK it, consider the connection
set up, and begin sending data, which in this case will be the HTTP request. Your exchange should follow
this pattern, though it is possible that it differs slightly if a packet was lost and must be retransmitted.

CN5E Labs (1.0) © 2012 D. Wetherall 6

Draw a time sequence diagram of the three-way handshake in your trace, up to and including the first
data packet (the HTTP GET request) sent by your computer when the connection is established Put your
computer on the left side and the remote server on the right side. As usual, time runs down the page,
and lines across the page indicate segments. The result will be similar to diagrams such as Fig. 6-37.

Include the following features on your diagram:

• The Sequence and ACK number, if present, on each segment. The ACK number is only carried if
the segment has the ACK flag set.

• The time in milliseconds, starting at zero, each segment was sent or received at your computer.
• The round-trip time to the server estimated as the difference between the SYN and SYN-ACK

segments.

Connection Options
As well as setting up a connection, the TCP SYN packets negotiate parameters between the two ends us-
ing Options. Each end describes its capabilities, if any, to the other end by including the appropriate Op-
tions on its SYN. Often both ends must support the behavior for it to be used during data transfer.

Answer the following question:

1. What TCP Options are carried on the SYN packets for your trace?

Common Options include Maximum Segment Size (MSS) to tell the other side the largest segment that
can be received, and Timestamps to include information on segments for estimating the round trip time.
There are also Options such as NOP (No-operation) and End of Option list that serve to format the Op-
tions but do not advertise capabilities. You do not need to include these formatting options in your an-
swer above. Options can also be carried on regular segments after the connection is set up when they
play a role in data transfer. This depends on the Option. For example: the MSS option is not carried on
each packet because it does not convey new information; timestamps may be included on each packet
to keep a fresh estimate of the RTT; and options such as SACK (Selective Acknowledgments) are used on-
ly when data is received out of order. For fun, look at the options on data packets in your trace.

FIN/RST Teardown
Finally, the TCP connection is taken down after the download is complete. This is typically done with FIN
(Finalize) segments. Each side sends a FIN to the other and acknowledges the FIN they receive; it is simi-
lar to the three-way handshake. Alternatively, the connection may be torn down abruptly when one end
sends a RST (Reset). This packet does not need to be acknowledged by the other side.

Draw a picture of the teardown in your trace, starting from when the first FIN or RST is issued until the
connection is complete. As before, show the sequence and ACK numbers on each segment. If you have
FINs then use the time difference to estimate the round-trip time.

Turn-in: Hand in your drawings and the answers to the above questions.

CN5E Labs (1.0) © 2012 D. Wetherall 7

Step 5: TCP Data Transfer
The middle portion of the TCP connection is the data transfer, or download, in our trace. This is the main
event. To get an overall sense of it, we will first look at the download rate over time.

Under the Statistics menu select an “IO Graph”. By default, this graph shows the rate of packets over
time. Tweak it to show the download rate with the changes given below. You might be tempted to use
the “TCP Stream Graph” tools under the Statistics menu instead. However, these tools are not useful for
our case because they assume the trace is taken near the computer sending the data; our trace is taken
near the computer receiving the data.

• On the x-axis, adjust the tick interval and pixels per tick. The tick interval should be small enough
to see into the behavior over the trace, and not so small that there is no averaging. 0.1 seconds
is a good choice for a several second trace. The pixels per tick can be adjusted to make the
graph wider or narrower to fill the window.

• On the y-axis, change the unit to be Bits/Tick. The default is Packet/Tick. By changing it, we can
easily work out the bits/sec throughput by taking the y-axis value and scaling as appropriate,
e.g., 10X for ticks of 0.1 seconds.

• Add a filter expression to see only the download packets. So far we are looking at all of the
packets. Assuming the download is from the usual web server port of 80, you can filter for it
with a filter of “tcp.srcport==80”. Don’t forget to press Enter, and you may need to click
the “Graph” button to cause it to redisplay.

• To see the corresponding graph for the upload traffic, enter a second filter in the next box. Again
assuming the usual web server port, the filter is “tcp.dstport==80”. After you press Enter
and click the Graph button, you should have two lines on the graph.

Our graph for this procedure is shown in the figure below. From it we can see the sample download rate
quickly increase from zero to a steady rate, with a bit of an exponential curve. This is slow-start. The
download rate when the connection is running is approximately 2.5 Mbps. You can check your rate es-
timate with the information from wget/curl. The upload rate is a steady, small trickle of ACK traffic.
Our download also proceeds fairly steadily until it is done. This is the ideal, but many downloads may
display more variable behavior if, for example, the available bandwidth varies due to competing down-
loads, the download rate is set by the server rather than the network, or enough packets are lost to dis-
rupt the transfer. You can click on the graph to be taken to the nearest point in the trace if there is a fea-
ture you would like to investigate.

CN5E Labs (1.0) © 2012 D. Wetherall 8

Figure 5: TCP download rate over time via an IO graph

Answer the following questions to show your understanding of the data transfer:

1. What is the rough data rate in the download direction in packets/second and bits/second once
the TCP connection is running well?

2. What percentage of this download rate is content? Show your calculation. To find out, look at a
typical download packet; there should be many similar, large download packets. You can see
how long it is, and how many bytes of TCP payload it contains.

3. What is the rough data rate in the upload direction in packets/second and bits/second due to the
ACK packets?

Inspect the packets in the download in the middle of your trace for these features:

• You should see a pattern of TCP segments received carrying data and ACKs sent back to the
server. Typically there will be one ACK every couple of packets. These ACKs are called Delayed
ACKs. By delaying for a short while, the number of ACKs is halved.

• Since this is a download, the sequence number of received segments will increase; the ACK
number of subsequently transmitted segments will increase correspondingly.

• Since this is a download, the sequence number of transmitted segments will not increase (after
the initial get). Thus the ACK number on received segments will not increase either.

• Each segment carries Window information to tell the other end how much space remains in the
buffer. The Window must be greater than zero, or the connection will be stalled by flow control.

CN5E Labs (1.0) © 2012 D. Wetherall 9

Answer the following question:

4. If the most recently received TCP segment from the server has a sequence number of X, then
what ACK number does the next transmitted TCP segment carry?

As well as regular TCP segments carrying data, you may see a variety of other situations. You can sort
the trace on the Info column and browse the packets of type “[TCP xxx ...”. Depending on the
download, you may see duplicate acks, out of order data, retransmissions, zero windows, window up-
dates, and more. These segments are not generally distinguished by flags in the TCP header, like SYN or
FIN segments. Instead, they are names for situations that may occur and be handled during transport.

Turn-in: Hand in your answers to the above questions.

Explore on your own
We encourage you to explore TCP on your own once you have completed this lab. Some ideas:

• Explore the congestion control and the classic AIMD behavior of TCP. To do this, you will likely
want to capture a trace while you are sending (not receiving) a moderate amount of data on a
TCP connection. You can then use the “TCP Stream Graph” tools as well as other analysis to ob-
serve how the congestion window changes over time.

• Explore the reliability mechanisms of TCP more deeply. Capture a trace of a connection that in-
cludes segment loss. See what triggers the retransmissions and when. Also look at the round-
trip time estimator.

• Look at the use of options including SACK to work through the details. You should see infor-
mation about ranges of received bytes during times of segment loss.

• TCP is the transport layer underlying the web. You can see how your browser makes use of TCP
by setting up concurrent connections.

 [END]

	Objective
	Requirements
	Step 1: Capture a Trace
	Step 2: Inspect the Trace
	Step 3: TCP Segment Structure
	Step 4: TCP Connection Setup/Teardown
	Three-Way Handshake
	Connection Options
	FIN/RST Teardown

	Step 5: TCP Data Transfer
	Explore on your own

